Oxidized low-density lipoprotein inhibits hepatitis C virus cell entry in human hepatoma cells.
نویسندگان
چکیده
Cell entry of hepatitis C virus, pseudoparticles (HCVpp) and cell culture grown virus (HCVcc), requires the interaction of viral glycoproteins with CD81 and other as yet unknown cellular factors. One of these is likely to be the scavenger receptor class B type I (SR-BI). To further understand the role of SR-BI, we examined the effect of SR-BI ligands on HCVpp and HCVcc infectivity. Oxidized low-density lipoprotein (oxLDL), but not native LDL, potently inhibited HCVpp and HCVcc cell entry. Pseudoparticles bearing unrelated viral glycoproteins or bovine viral diarrhea virus were not affected. A dose-dependent inhibition was observed for HCVpp bearing diverse viral glycoproteins with an approximate IC50 of 1.5 microg/mL apolipoprotein content, which is within the range of oxLDL reported to be present in human plasma. The ability of lipoprotein components to bind to target cells associated with their antiviral activity, suggesting a mechanism of action which targets a cell surface receptor critical for HCV infection of the host cell. However, binding of soluble E2 to SR-BI or CD81 was not affected by oxLDL, suggesting that oxLDL does not act as a simple receptor blocker. At the same time, oxLDL incubation altered the biophysical properties of HCVpp, suggesting a ternary interaction of oxLDL with both virus and target cells. In conclusion, the SR-BI ligand oxLDL is a potent cell entry inhibitor for a broad range of HCV strains in vitro. These findings suggest that SR-BI is an essential component of the cellular HCV receptor complex.
منابع مشابه
VIRAL HEPATITIS Oxidized Low-Density Lipoprotein Inhibits Hepatitis C Virus Cell Entry in Human Hepatoma Cells
Cell entry of hepatitis C virus, pseudoparticles (HCVpp) and cell culture grown virus (HCVcc), requires the interaction of viral glycoproteins with CD81 and other as yet unknown cellular factors. One of these is likely to be the scavenger receptor class B type I (SR-BI). To further understand the role of SR-BI, we examined the effect of SR-BI ligands on HCVpp and HCVcc infectivity. Oxidized low...
متن کاملLipoprotein Lipase Inhibits Hepatitis C Virus (HCV) Infection by Blocking Virus Cell Entry
A distinctive feature of HCV is that its life cycle depends on lipoprotein metabolism. Viral morphogenesis and secretion follow the very low-density lipoprotein (VLDL) biogenesis pathway and, consequently, infectious HCV in the serum is associated with triglyceride-rich lipoproteins (TRL). Lipoprotein lipase (LPL) hydrolyzes TRL within chylomicrons and VLDL but, independently of its catalytic a...
متن کاملOxidized Low-Density Lipoprotein Is a Novel Predictor of Interferon Responsiveness in Chronic Hepatitis C Infection
BACKGROUND & AIMS Hepatitis C virus (HCV) cell entry is mediated by several cell surface receptors, including scavenger receptor class B type I (SR-BI). Oxidized low density lipoprotein (oxLDL) inhibits the interaction between HCV and SR-BI in a noncompetitive manner. We tested whether serum oxLDL levels correlate with sustained virologic response (SVR) rates after interferon-based treatment of...
متن کاملScavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81.
UNLABELLED Hepatitis C virus (HCV) is a major cause of chronic hepatitis worldwide. Scavenger receptor class B type I (SR-BI) has been shown to bind HCV envelope glycoprotein E2, participate in entry of HCV pseudotype particles, and modulate HCV infection. However, the functional role of SR-BI for productive HCV infection remains unclear. In this study, we investigated the role of SR-BI as an e...
متن کاملHepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles.
HIV pseudotypes bearing native hepatitis C virus (HCV) glycoproteins (strain H and Con1) are infectious for the human hepatoma cell lines Huh-7 and PLC/PR5. Infectivity depends on coexpression of both E1 and E2 glycoproteins, is pH-dependent, and can be neutralized by mAbs mapping to amino acids 412-447 within E2. Cell-surface expression of one or all of the candidate receptor molecules (CD81, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hepatology
دوره 43 5 شماره
صفحات -
تاریخ انتشار 2006